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Abstract Space Situational Awareness (SSA) is composed of
three interdependent tasks: discovery of new objects, tracking of
detected objects, and characterization of tracked objects. Cur-
rently these problems are treated separately and independently
of each other, which may result in the non-optimal processing of
data, with a corresponding loss of potential information. Given
the scarcity of sensors available to perform SSA missions, it is
crucial that these resources be used as efficiently as possible.
Detection and classification both involve estimation over the
space of discrete variables (e.g., existence/nonexistence, satellite
mission type), whereas tracking involves estimation over a space
of continuously-valued variables (e.g., position and velocity). The
current paper uses Finite Set Statistics (FISST) to formulate a
hybrid SSA estimation problem, which consists of simultaneously
estimating the number of objects and their tracks, in the
presence of false alarms, misdetections and sensor noise. The
main contribution of the paper is that, in order to reduce the
computational burden entailed in FISST, we employ a Gaussian
mixture approximation, not to the first-moment (as in GM-PHD)
of the full FISST update equations, but apply the approximation
directly to the full FISST equations. The specific GM technique
we employ is the Adaptive Entropy-based Gaussian-mixture
Information Synthesis (AEGIS). The approach is demonstrated
on a simplified SSA application example.

I. INTRODUCTION

About five hundred thousand objects one centimeter in size
or larger populate the space around earth, which increases
the need for new methods and techniques that can contribute
to the core elements of Space Situational Awareness (SSA):
discovery of new objects, tracking of detected objects, and
characterization of tracked objects. Whereas most SSA lit-
erature treats detection [1], characterization [2] and tracking
[3] independently from each other, the current paper seeks a
integrated approach to all these problems. In treating detection,
characterization and tracking separately, valuable information
can be lost. By taking into account the fact that detection,
characterization, and tracking are interdependent, information
loss is limited. For example, object type may define some basic
shape characteristics that affect motion (e.g., drag coefficient
for low Earth orbit spacecraft), and thus provides information

about the object’s dynamics and its track, and vice versa.
Methods that explicitly account for these interdependencies
are therefore at an advantage over methods that assume
independence between the problems.

Any such integrated approach to the SSA problem must
deal with the hybrid (discrete and continuous variables) in-
ference problem that results. The problems of detection and
characterization involve estimation over the space of dis-
crete variables (e.g., existence/non-existence, satellite mission
type), whereas tracking involves estimation over a space of
continuously-valued variables (e.g., position and velocity).
Given the potential coupling between the dynamics of these
variables as discussed above, the SSA problem is inherently a
hybrid estimation problem, where the discrete and continuous
variables are dynamically coupled.

Finally, it is important to note that sensor observation time
is expensive, and only a few stations worldwide can acquire
SSA measurements. In particular, sensor resources at our
disposal are scarce in comparison to the size of the SSA
tasks at hand (the large number of objects to be catalogued
and the large search space). These same limited sensors can
be operated in different sensing modes which optimize their
detection (for search) or tracking performance characteristics.
However, wide-angle measurements (ideal for detection), for
example, may result in reduced position accuracy and/or loss
of less reflective (with respect to sensor detection wavelength)
objects. Decisions on whether to operate the sensor in a track
versus a detect mode require an assessment of how much
information we expect to gain. This expected information
gain will have two (interdependent) components: one that is
continuous in nature and the other that is discrete in nature.
Therefore, the expected information gain associated with each
sensor assignment is of a hybrid nature. The final requirement,
therefore, for an effective approach to solving the SSA prob-
lem must provide rigorous mechanism for quantifying hybrid
information gain for optimal sensor allocation.

The hybrid estimation method we propose for solving
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the SSA problem is Finite Set Statistics (FISST) [4], [5].
FISST is a Bayesian approach that allows estimation of
hybrid variables, without separating tracking, detection and
characterization. FISST naturally suggests a way to generalize
existing measures of information gain for purely discrete and
purely continuous problems to rigorous hybrid measures of
information gain [5], [6], which is important for providing
information-theoretic criteria for sensor allocation.

The greatest challenge in implementing FISST in real-time,
which is critical to any viable SSA solution, is computational
burden. The first-order Probability Hypothesis Density (PHD)
approach has been proposed as a computationally tractable
approach to applying FISST [5]. PHD can further employ
a Gaussian Mixture (GM) or a particle filter approximation
to further reduce the computational burden (by removing the
need to do a rigorous discretization of the state space) at the
expense of simplifying assumptions. In this paper, we develop
a GM approximation and apply it, not to the first-order PHD
approximation, but to the original full hybrid propagation and
update equations derived from FISST. This eliminates any
information loss associated with using the first-order PHD
approximation. The approach we pursue here is similar in
spirit to the concept of the “para-Gaussian” that was very
briefly described in [7].

The particular GM technique we use for the approximation
is Adaptive Entropy-based Gaussian-mixture Information Syn-
thesis (AEGIS) [8], [9], which is an estimation approach for
non-linear continuous dynamical systems. AEGIS implements
a GM model representation of the probability density function
(pdf) that is adapted online via splitting of the GM components
whenever an entropy-based detection of nonlinearity-induced
distortions of the Gaussian components is triggered during
the forward propagation of the pdf. In doing so, the GM
approximation adaptively includes additional components as
nonlinearity is encountered and can therefore be used to more
accurately approximate the pdf.

To summarize, the main contributions of this paper are
(1) the use of the GM AEGIS approach to approximate the
complete, un-approximated FISST propagation and update
equations, and (2) the application of this approach to the
problem of detection and tracking of space objects. The
latter is demonstrated via a simple “0-1” object example. The
remainder of the paper is organized as follows. We first briefly
summarize the theory behind FISST in Section II. Next we
briefly summarize AEGIS in Section III. In Section III-A the
general AEGIS-FISST approach is summarized. In Section IV,
the method is applied to a planar single object SSA detection
incorporating the possibility of false alarms, misdetections,
and sensor tracking noise. In Section V we present numerical
simulation results for the simple SSA problem, demonstrating
the capabilities and performance properties of the method. We
conclude with future research directions in Section VI.

II. A BRIEF INTRODUCTION TO FISST
As opposed to purely discrete or purely continuous Bayesian

inference, FISST makes use of set-valued random variables.

For example, if we let W be the set of all possible space
object types, then xd ∈ W is the discrete component of the
state that describes a space object’s type and x ∈ R

6 is the
continuous component of the state that specifies the position
and velocity of the object, then the set-valued random variable
corresponding to the hybrid system state is X = {xd,x}.
In a detection and tracking problem, the set-valued hybrid
system state X = (n,X), where n is the discrete component
that describes the number of objects in the search space and
X =

[
x
T
1 x

T
2 . . . x

T
n

]T
∈ R

6n describes the positions and
velocities of these objects. Notice here the explicit dependence
of the dimension of the continuous state space R

6n on the
discrete component n of the state. For brevity, we simply write
X = {x1,x2, . . . ,xn} in the detection and tracking problem.

In this paper we only look at the integrated detection and
tracking problem. Hence, the state X = {x1,x2, . . . ,xn}
gives the number of objects n and where xi describes the
position and velocity of object i. We will assume a planar
dynamic model. In other words, we have xi ∈ R

4. Similar
definitions apply to the set-valued measurement variable Z =
{z1, z2, . . . , zm} with m sensor returns and where zi ∈ R

m,
i = 1, . . . ,m, is the value of each return.

Bayes’ law takes up exactly the same form in the hybrid
FISST approach as it does in purely continuous and purely
discrete problems:

fk+1|k(X |Z(k)) =
∫
fk+1|k(X,X ′) · fk|k(X

′|Z(k))δX ′

fk+1|k+1(X |Z(k+1)) =
fk+1(Zk+1|X)fk+1|k(X|Z(k))

fk+1(Zk+1|Z(k))
, (1)

where Z(k+1) = {Z1, . . . , Zk+1} is the time sequence of
measurement sets up to time k+1, and where fk+1|k(X |X ′)
is the multi-target Markov transitional density. The function
fk+1(Z|X) is the multi-target likelihood function that de-
scribes the likelihood of getting a measurement Zk+1 given
the state Xk+1. The first of Eq. (1) is the prediction step and
the second is the update or corrector step. The normalization
factor in the update step is given by

fk+1(Zk+1|Z
(k)) =

∫
fk+1(Zk+1|X)fk+1|k(X |Z(k))δX. (2)

Notice that the integrals are set integrals, denoted by the
variable of integration δX vice dX for a standard integral.
For multi-target detection and tracking, the set integral of a
scalar-valued set function g(X) is defined to be the integral
of g over the continuous component, summed over all possible
discrete values [4], [5]:∫

g(X)δX = g(X = ∅)

+
∞∑
i=1

1

i!

∫
g({x1, . . . ,xi})dx1 · · ·dxi,(3)

where the factorial coefficient takes into account all the
different possible orderings of X as evaluated in the function
g. The need for this factor accounts for the data-association
problem [5].
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III. A BRIEF INTRODUCTION TO AEGIS

Most implementations of Gaussian mixture propagation
algorithms assume that the component weights remaining
constant over the duration of the propagation span, and so
do not incorporate a method for online refinement of the
Gaussian mixture. Methods, such as the Adaptive Gaussian
Mixture provide a method for adaptive weight variation with-
out a mechanism to vary (coarsen or refine) the number
of Gaussian components [10]. The AEGIS filter approaches
the problem of adapting the weights of the GM pdf by
monitoring nonlinearity-induced distortions of the Gaussian
components during the propagation of the pdf and using a
splitting algorithm to increase the accuracy of linearization,
thereby allowing the filter to modify the GM components
(weight value and cardinality) in such a way so as to avoid
significant linearization errors.

1) Dynamical System Model: Many systems of interest fall
under the broad classification of nonlinear systems. An estima-
tion algorithm which exploits at least some characteristics of
the nonlinearities is preferable to approximating the problem
as that of a linear one. Consider the nonlinear dynamical
system governed by the differential equation

ẋ(t) = f(x(t), t) , x(t0) = x0 , (4)

where x(t) is the non-set valued, continuous state of the
system, f(·) represents the sufficiently differentiable nonlinear
dynamics of the system, and x0 is the initial condition. The
initial condition is assumed to be random with pdf f0|0(x).

2) Detecting Nonlinearity Induced Distortions to the GM
during Propagation: An integral aspect of the AEGIS propa-
gation scheme is the detection of nonlinearity during the prop-
agation of uncertainty. The method employed in the AEGIS
approach is based on a property derived from the differential
entropy for linearized dynamical systems that allows for
the detection of nonlinearity without employing linearization-
based methods. It can be shown that the differential entropy
for a linearized, Gaussian system evolves as [11], [12]

Ḣ (x) = trace {F(x̂(t), t)} , (5)

where F(x̂(t), t) is the dynamics Jacobian matrix. The value
of the entropy for a linearized system can be determined
by numerically integrating Eq. (5) with an appropriate initial
condition and requiring only the evaluation of the trace of
the linearized dynamics Jacobian. In parallel, a nonlinear
implementation of the integration of the covariance matrix
(e.g. the Unscented Kalman Filter (UKF) [13]) is considered,
which allows a nonlinear determination of the differential
entropy. Any deviation between these values of entropy there-
fore serves as an indication that nonlinearity is impacting the
solution. When the difference between the linearized-predicted
entropy and the nonlinear computation of the entropy exceeds
a user-defined threshold, nonlinearity has been detected in the
propagation of the uncertainty, the propagation is halted, a
splitting algorithm is applied to the Gaussian distribution, and
propagation resumes with the adapted distribution.

3) Propagation: Consider the time-propagation of the pdf
and consider the time interval t ∈ [tk, tk+1]. It is desired to
approximate the conditional pdf at time tk via

fk|k(x|Z
k) =

N̄∑
i=1

w̄iNi(x; μ̄i, P̄i), (6)

where Ni(x; μ̄i, P̄i) is a Gaussian distribution in x with mean
μ̄i and covariance P̄i, and where w̄i is the weight of the ith

GM component with
∑N̄

i=1 w̄i = 1. The propagated pdf is
then given by

fk+1|k(x|Z
k) =

Ñ∑
i=1

w̃iNi(x; μ̃i, P̃i), (7)

where w̃i, μ̃i and P̃i, i = 1, . . . , Ñ , are the weight, mean
and covariance of the of the ith propagated GM component.
It should be noted that due to the splitting algorithm described
above, the number of components in fk+1|k(x|Z

k), given by
Ñ , may now be different than the number of components in
fk|k(x|Z

k), given by N̄ .
To propagate the pdf forward in time, a nonlinear algorithm

such as the UKF is applied to each component of the GM pdf.
Simultaneously, the linearized differential entropy is propa-
gated as described previously. Each component is monitored
for deviations in the nonlinear and linear predictions of the
entropy. Once nonlinearity is detected on a component, the
propagation is halted at time ts, where tk ≤ ts ≤ tk+1. If
ts �= tk+1, then a splitting step is performed on the component
for which nonlinearity was detected.1 That is, if nonlinearity
was detected in the jth component at time ts, then the jth

component is replaced at time ts by

w̄jNj(x; μ̄j , P̄j) ≈
G∑

r=1

wrNr(x;μr,Pr) (8)

where ts has been omitted for brevity, and the replacement
component weights, means, and covariances are computed
using the Gaussian splitting algorithm discussed in [11]. After
the splitting step has been performed, return to Eq. (7) with
tk = ts and N̄ ← N̄ + G − 1 components in the Gaussian
mixture, then continue until ts = tk+1 is reached. Once
ts = tk+1, the propagation step has been completed with Ñ
components having weights w̃i, means μ̃i, and covariances
P̃i, which allows the a priori GM pdf to be evaluated via
Eq. (6).

A. AEGIS based Approximation of FISST: AEGIS FISST
The AEGIS-FISST approach relies on the observation that

if the (conventional non-hybrid) prior fk|k(x|Z
(k)) is a GM,

then the posterior multi-target pdf will also be a sum of
Gaussian mixtures from which one can extract the (conven-
tional) posterior pdf fk+1|k+1(x|Z

(k+1)) (also a GM) under
the hypothesis that an object exists. This observation is what

1Without loss of generality, nonlinearity is assumed to be detected on only
one component. If more components detect nonlinearity, the same process is
applied to each component individually.
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distinguishes the proposed method from a GM implementation
of the PHD approach [5]. PHD relies on approximating the
multi-target posterior pdf by its first-order moment PHD.
After that, a GM is used to approximate the PHD. In our
approach, we circumvent the first step of approximating the
multi-target pdf by its PHD and realize that the Gaussian
mixture property is preserved in the update step. Thus, one
need not approximate the multi-target pdf by its first-order
PHD and the only approximation one performs is that of using
a GM to model the prior pdf.

IV. A SINGLE-OBJECT ILLUSTRATIVE EXAMPLE

A. The Basic FISST Propagation and Update Equations

For the sake of brevity and ease of exposition, we consider
a problem in which there can exist at most one object in the
search space. The sensors are assumed imperfect with a non-
zero probability of false alarm due to clutter (small objects that
are of no interest, thruster exhaust plumes, environmentally-
induced sensor responses, etc), and with a non-unity proba-
bility of detection when the object is within a pre-specified
field-of-view, and a zero probability of detection when the
object is outside this field-of-view. In tracking an object, the
sensor adds some tracking noise. Without loss of generality,
the sensor is assumed to measure the position and velocity of
an object directly.

For the single object case with at most a single source of
clutter, one can use a Bernoulli distribution [14] for the various
multi-target densities as we will show below. Extension to the
arbitrary number of objects can be addressed using a Poisson
distribution model for the number of objects as well as clutter
sources.

Under these assumptions and given measurements Z(k) up
to time step k, the multi target prior density function has the
form

fk|k(X |Z(k)) =

⎧⎨
⎩

1− pk if X = ∅
pk · fk|k(x|Z

(k)) if X = {x}
0 if |X | ≥ 2

(9)

where pk is the prior probability that the object exists at
time k (we will henceforth drop the subscript k) with prior
conventional pdf given by fk|k(x|Z

(k)).
Remark. In composing a multi-target pdf, say for the the
case that X = {x} (i.e., the hypothesis that an object
exists in the search space with a state x), one considers
fk|k(X = {x}|Z(k)) as the “probability” of an object ex-
isting with true probability p and having the object’s con-
tinuous state having (conventional) pdf fk|k(x|Z

(k)). Hence,
fk|k(X |Z(k)) = p · fk|k(x|Z

(k)) as shown in the second
line in Eq. (9). The “and” operation was translated into a
product of the discrete probability p and the continuous pdf
fk|k(x|Z

(k)). Likewise, the probability that X = ∅ is thus
simply 1−p. One can check that

∫
fk|k(X |Z(k))δX = 1 and,

hence, fk|k(X |Z(k)) is a valid multi-target pdf.
Since we make the simplifying assumption that at most

a single object exists in the search space, the multi target

transitional Markov density function is given by

fk+1|k(X |∅) =

{
1 if X = ∅
0 if |X | ≥ 1

fk+1|k(X |{x′}) =

⎧⎨
⎩

1− ps if X = ∅
ps · fk+1|k(x|x

′) if X = {x}
0 if |X | ≥ 2

(10)

where ps is the probability that the object servives in the
search space from time step k to time step k + 1 and where
fk+1|k(x|x

′) is the conventional Markov transitional density
function that describes the likelihood of transitioning to the
state x from the state x

′ under the hypothesis that an object
with state x

′ exists. One can add a birth model, but we omit
this here for the sake of transparency of exposition.

Applying the basic definition of a set integral, for the
predicted multi target density function, we have

fk+1|k(X = ∅|Z(k))

=

∫
fk+1|k(X = ∅|X ′)fk|k(X

′|Z(k))δX ′

= fk+1|k(∅|∅) · fk|k(∅|Z
(k))

+

∫
fk+1|k(∅|{x

′} · fk|k({x
′}|Z(k))dx′

= (1 − p) + p

∫
(1− ps)fk|k(x

′|Z(k))dx′

= (1 − p) + p(1− ps) (11)

and (we have omitted the calculation for the second expression
for the sake of brevity)

fk+1|k(X = {x}|Z(k)) = pspfk+1|k(x|Z
(k)). (12)

One can check that
∫
fk+1|k(X)δX = 1.

Let the probability of detection be pD and the probability
of false alarm be pF . These two probabilities are generally
a function of the location of the object (whether it is in the
field-of-view or not). Then the multi target likelihood function
is given by

fk+1(Zk+1 = ∅|∅) = 1− pF

fk+1(Zk+1 = {z}|∅) = pF g(z)

fk+1(Zk+1 = ∅|{x}) = (1− pF )(1− pD)

fk+1(Zk+1 = {z}|{x}) = pF (1− pD)g(z)

+pD(1 − pF )fk+1(z|x)

fk+1(Zk+1 = {z1, z2}|{x}) = pF pD
[
g(z1)fk+1(z2|x)

+g(z2)fk+1(z1|x)
]

(13)

where g(z) is the spatial likelihood clutter distribution function
that a clutter generates the measurement z.
Remark. In order to understand where the components of
the multi-target likelihood function originate from, consider
for example the last component fk+1(Zk+1 = {z1, z2}|{x}).
Given that an object exists in the search space, this is the
“probability” that two measurements are registered. The only
two possibilities are that z1 was generated by a clutter source
and z2 by an object, or vice-versa. This gives the sum
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in the bracketed term. For that scenario (i.e., two sensor
returns) to occur a detection of the object (hence, the pD
coefficient outside the bracketed term) as well as a false
alarm triggered by clutter (hence, the pF coefficient outside
the bracketed term) must take place. One can check that∫
fk+1(Zk+1|∅)δZk+1 =

∫
fk+1(Zk+1|{x})δZk+1 = 1.

The multi target Bayes factor in the denominator of the
corrector step (the second of Eq. (1) is given by

fk+1(Zk+1 = ∅|Z(k))

=

∫
fk+1(Z = ∅|X)fk+1|k(X |Z(k))δX

= (1 − pF ) ((1− p) + p(1− ps)) + (1− pF )(1 − pD)psp,
(14)

fk+1(Zk+1 = {z}|Z(k)) =

∫
fk+1({z}|X)fk+1|k(X |Z(k))δX

=
[
pF ((1 − p) + p(1− ps)) + psppF (1 − pD)

]
g(z)

+ psppD(1− pF )fk+1(z), (15)

and

fk+1(Zk+1 = {z1, z2}|Z
(k))

=

∫
fk+1(Z = {z1, z2}|X)fk+1|k(X |Z(k))δX

= psppF pD (g(z1)f(z2) + g(z2)f(z1)) , (16)

where fk+1(z) is the conventional Bayes factor given
that an object exists. Again, one can check that∫
fk+1(Zk+1|Z(k))δZk+1 = 1.

Putting all the above together for the multi target corrector
step, we get the following.

If Zk+1 = ∅ (i.e., no sensor return at time step k + 1)
the posterior multi-target pdf component corresponding to the
hypothesis that no object exists is given by:

fk+1|k+1(X = ∅|Zk+1 = ∅)

=
fk+1(Zk+1 = ∅|Xk+1 = ∅)fk+1|k(X = ∅|Z(k))

fk+1(Zk+1 = ∅)

=
(1− pF ) ((1 − p) + p(1− ps))

fk+1(Zk+1 = ∅)
. (17)

Likewise for the case that an object exists with state x, we
obtain

fk+1|k+1(X = {x}|Zk+1 = ∅)

=
(1− pD)(1 − pF )pspfk+1|k(x|Z

(k))

fk+1(Zk+1 = ∅)
. (18)

Omitting the detailed derivation, if Zk+1 = {z} we have:

fk+1|k+1(X = ∅|Zk+1 = {z})

=
pF ((1 − p) + p(1− ps)) g(z)

fk+1(Zk+1 = {z}))
(19)

and

fk+1|k+1(X = {x}|Zk+1 = {z}) =

(pD(1− pF )fk+1(z|x) + pF (1− pD)g(z)) pspfk+1|k(x|Z
(k))

fk+1(Zk+1 = {z})
.

(20)

If Zk+1 = {z1, z2} we have:

fk+1|k+1(X = ∅|Zk+1 = {z1, z2}) = 0. (21)

Remark. Equation (21) makes perfect sense since getting two
returns (under the assumption that at most a single object
exists) ensures that at least one of them was generated by an
existing object (and, hence, that the probability that no object
exists is zero), and

fk+1|k+1(X = {x}|Zk+1 = {z1, z2}) =

pF pD(g(z1)fk+1(z2|x) + g(z2)fk+1(z1|x))pspfk+1|k(x|Z
(k))

fk+1(Zk+1 = {z1, z2})
.

(22)

This second component will in fact integrate to one. The
integral of fk+1|k+1(X = {x}|Zk+1 = {z1, z2}) gives the
posterior discrete probability that an object exists. Hence, that
quantity will have to integrate to 1.

B. The AEGIS FISST Approximation for the Single Object
Problem

We will assume standard (unperturbed) Keplerian object
dynamics which can be modeled in the form (4). Substituting
(6) and (7) into Eq. (17)-(22) to give an updated set of posterior
Gaussian sum parameters at time k+1. The posterior Gaussian
sum has the form

fk+1|k+1(x|Z
k+1) =

N̂∑
i=1

ŵiNi(x; μ̂i, P̂i)

=
fk+1|k+1(X = {x}|Zk+1)

p(tk+1)
, (23)

with
∑N̂

i=1 ŵi = 1 and where p(tk+1) is the discrete posterior
probability that an object exists and is given by [5]

p(tk+1) =

∫
fk+1|k+1(X = {x}|Zk+1)dx. (24)

Equation (23) can be used to extract the components of the
posterior GM under the hypothesis that an object exists.

If Zk+1 = ∅, since there is no return, the “updated”
components are simply the same as those of the propagated
GMs. This can readily be verified by substituting Zk+1 = ∅
into the update equations from the previous section. Hence,
the updated GMs are given by:

N̂ = Ñ,

ŵi = w̃i,

μ̂i = μ̃i

P̂i = P̃i, (25)
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i = 1, . . . , Ñ .
If Zk+1 = {z} (i.e., the sensor gets one return), the resulting

posterior GM can be discretized down into two separate sums:
(1) an update of the posterior under the hypothesis that the
measurement came from an existing object, and (2) an update
under the hypothesis that the measurement came from a clutter
and, in which case, the propagated GM is left unchanged for
this case. Total number of components would then be N̂ =
2Ñ . Substituting Zk+1 = {z} and Eq. (23) into the update
equations for the single-object problem, one can check that
the posterior components of the GM are given by (we split
the components into two groups for the two cases pointed out
earlier in the paragraph):

N̂ = 2Ñ

ŵ1
i =

pD(1− pF )pspNi

(
z;Hμ̃i,R+HP̃iH

T
)
w̃i

d1(z)

ŵ2
i =

pF (1− pD)pspg(z)w̃i

d1(z)
,

μ̂
1
i = (P̃−1

i +H
T
R

−1
H)−1(P̃−1

i μ̃i +H
T
R

−1
z)

μ̂
2
i = μ̃i

P̂
1
i =

(
P̃

−1
i +H

T
R

−1
H

)−1

P̂
2
i = P̃i, (26)

i = 1, . . . , Ñ , where

d1(z) = pD(1− pF )pspfk+1(z) + pF (1− pD)pspg(z),

and where

fk+1(z) =

Ñ∑
i=1

w̃iNi(z;Hμ̃i,R+HP̃iH
T).

In the above equations H is the linearization of h(x) evaluated
at the propagated value of the state estimate x̃i.

If Zk+1 = {z1, z2} (i.e., the sensor receives two returns),
the resulting posterior Gaussian sum can be broken down into
two separate sums: (1) an update of the posterior under the
hypothesis that the first measurement came from a clutter and
the second from an existing object, and (2) an update of the
posterior under the hypothesis that the second measurement
came from a clutter and the first from an existing object. The
total number of components in the posterior GM would then
be N̂ = 2Ñ with components

N̂ = 2Ñ

ŵ1
i =

pF pDpspg(z1)Ni

(
z2;Hμ̃i,R+HP̃iH

T
)
w̃i

d2(z1, z2)

ŵ2
i =

pF pDpspg(z2)Ni

(
z1;Hμ̃i,R+HP̃iH

T
)
w̃i

d2(z1, z2)

μ̂
1
i = (P̃−1

i +H
T
R

−1
H)−1(P̃−1

i μ̃i +H
T
R

−1
z2)

μ̂
2
i = (P̃−1

i +H
T
R

−1
H)−1(P̃−1

i μ̃i +H
T
R

−1
z1)

P̂
1
i = P̂

2
i =

(
P̃

−1
i +H

T
R

−1
H

)−1

, (27)

where

d2(z1, z2) = pF pD (g(z1)pspfk+1(z2) + g(z2)pspfk+1(z1)) ,

and where fk+1(zj), j = 1, 2 for the Gaussian sum approxi-
mation can be shown to be

fk+1(zj) =

Ñ∑
i=1

w̃iNi(zj ;Hμ̃i,R+HP̃iH
T). (28)

The above posterior Gaussian sum parameters become the
prior at time step k+1. The above GM parameters can be used
to compute the posterior multi-target pdf fk+1|k+1(X |Zk+1).
One can then employ the Marginal Multitarget (MaM) esti-
mator or the Joint Multitarget estimator to solve for the state
estimate x̂k+1 if an object is determined to be existing [5]. For
this simple single-object case, both methods are equivalent
and the state estimate x̂k+1 is simply the the maximum of
fk+1|k+1(X |Zk+1).

In general detection and estimation problems, the first step
in the MaM estimator is to compute the maximum a posteriori
(MAP) estimate of the number of objects, which is given by:

n̂ = round(arg sup
n

fk|k(n|Z
(k))), (29)

where fk|k(n|Z
(k)) is the cardinality distribution [5]. Given

n̂, the second step is to solve for the maximum a posteriori
estimate of the state

x̂
MaM = arg sup

{x1,...,xn̂}

fk|k({x1, . . . ,xn̂|Z
(k)}). (30)

The MaM estimator is Bayes-optimal but is not known if it is
statistically consistent (i.e., whether it converges to the correct
state in the static case) [4].

For the (at most) single object object problem, n̂ = 1 if
the posterior discrete probability p(tk+1) is larger than 0.5. If
p(tk+1) > 0.5, the state estimate corresponds to the maximizer
of the posterior multi-target pdf fk+1|k+1(X = {x}|Zk+1).

V. NUMERICAL SIMULATION RESULTS

In this section we demonstrate the single-object approach,
outlined in the previous section, on a simple SSA problem.
We assume that there can be at most a single object. If the
orbiting object exists, it satisfies unperturbed two-body planar
Keplerian dynamics [15]. We will assume that if an object
indeed exists, its probability of survival is ps = 1.

We set the problem up such that an object initially exists
with probability one and set the prior assumed by AEGIS-
FISST to be p0 = 1. The object true initial state is such
that its apoapsis is 42,100 km and the eccentricity is 0.2
(specifying these determines the initial position and velocity
of the object [15]). The prior distribution fed into the AEGIS-
FISST algorithm was assumed to have a mean identical to the
true object location, but with a position variance of 1 km2

and a velocity variance of 1 m2/s2. Hence, the initial prior is
a single-component Gaussian mixture distribution as required
by AEGIS-FISST.
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